LONGVIEW PINES APARTMENTS

5.92 Acre Tract
I. C. Skillern Survey, A-4
Gregg County, Longview, Texas

FEASIBILITY STUDY

February 2018

Prepared By:

Gary Burton Engineering
A CRU Company
EXECUTIVE SUMMARY

This Feasibility Study addresses the requirements set forth by the Texas Department of Housing and Community Affairs, Housing Tax Credit Program: 2017-2018 Qualified Allocation Program, Section 11(A), for a 5.92 acre tract in the I. C. Skillern Survey, A-4, Gregg County, Texas. Said tract of land is composed of two separate parcels being a 1.01 parcel and a 4.91 acres parcel.

The subject tract is inside the City of Longview city limits. Both parcels, composing the tract, were recently rezoned from Planned Development “PD-2” to Multi-Family “MF-3”. The City ordinance rezoning the property was approved and enacted on February 8, 2018. A copy of the ordinance is included as an exhibit in this report.

The design of all proposed improvements, which will take place at a later date, should be able to comply with the City of Longview building codes, ordinances, standards, and design requirements. Of note, the significant change in topography across the site will likely require a series of retaining walls to establish building pads.

The site fronts on two City maintained streets; Gilmer Road to the West and East Fairmont Street to the South. Based on the City of Longview’s GIS mapping system, the site has access to water, sanitary sewer, and storm drainage facilities, all of which are located within the proximity of the site. Power and communication services are located adjacent to the site along both road frontages.

Gary Burton Engineering a CP&Y Company (F-1741)

Date: 2/24/18
Table of Contents

1. Existing Site Conditions ... 1
2. Survey and/or Property Information .. 1
3. Storm Water Management ... 1
4. Floodplain Information ... 1
5. Topographic Review ... 1
6. Geotechnical Review .. 2
7. Site Ingress/Egress Requirements .. 2
8. Offsite Requirements and Costs .. 2
9. Onsite Requirements and Costs .. 3
10. Water/Sanitary Sewer Service Summary ... 3
11. Electricity, Cable TV, and Gas ... 4
12. Zoning .. 4
14. Impact or Development Fee Summary .. 5
15. Building Permit Fee Summary ... 5
16. Site Plan Observations, Recommendations, Design ... 5
17. Other Considerations or Issues Relevant To Site Development ... 5

List of Exhibits

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boundary Survey</td>
</tr>
<tr>
<td>2</td>
<td>Site Plan</td>
</tr>
<tr>
<td>3</td>
<td>Flood Insurance Rate Maps (FIRMs)</td>
</tr>
<tr>
<td>4</td>
<td>Online Soils Report from USDA, NRCS</td>
</tr>
<tr>
<td>5</td>
<td>Rate / Fee Schedules</td>
</tr>
<tr>
<td>6</td>
<td>P&Z Agenda 01/30/18 – Rezoning Case and Ordinance 4147</td>
</tr>
<tr>
<td>7</td>
<td>City’s GIS Utility Maps – 01/31/18 and 02/16/18</td>
</tr>
<tr>
<td>8</td>
<td>Contact List(s)</td>
</tr>
</tbody>
</table>
1. **Existing Site Conditions**

The site is located in the northeast quadrant of Gilmer Road and E. Fairmont Street, just off the intersection of the two streets. One of the two parcels has frontage along Gilmer Road and is grassed with a few trees on site. The other parcel has frontage along E. Fairmont Street and is covered in thick trees and underbrush, and appears to be in an untouched condition.

2. **Survey and/or Property Information**

A current boundary survey is presented in Exhibit 1. The survey references a park and channel easement and floodway at the northeast corner, and eleven (11) documents pertaining to rights of way/easements for gas pipelines and utilities and whether or not the document affects the subject tract. No other easements or encroachments were apparent.

3. **Storm Water Management**

Both of the adjacent streets are paved, have curb and gutter sections and storm drain collection systems.

Based on the topography of the site, surface water will flow generally from the southwest corner of the site (along E. Fairmont Street) to the northeast corner to drain offsite into the City drainage. This channel is indicated on the City’s GIS system to be “Gilmer Creek”; which flows east to drain into “Grace Creek”.

Of note, based on field observations, surface water from the adjacent bank at 800 Gilmer Road, drains directly onto the site. This water will need to be accounted for in the final design of the storm drainage system for the subject property.

4. **Floodplain Information**

The northeast corner of the tract is within Flood Zone AE and along an established floodway. This floodway has an established base flood elevation of approximately 291 above MSL. The remainder of the tract is within Flood Zone X, area of minimal flood hazard, according to FEMA Flood Insurance Rate Map (FIRM) No. 48183C0094F. The Flood Zone limits are shown on the FIRM presented in Exhibit 3.

5. **Topographic Review**

The site elevations vary from 340 at the high point to approximately 290 at the northeast corner, according to USGS quad maps and GPS shots taken during the boundary survey. The contours from these sources are shown on the Site Plan presented in Exhibit 2, at 10' intervals.
6. **Geotechnical Review**

A geotechnical investigation has not been performed on this tract. However, based on an online soils survey from the USDA NRCS as presented in Exhibit 4, soils could range clays to sandy clays to fine sandy loam. This online information is schematic in nature and should not be relied upon as a design tool. Therefore, a geotechnical investigation is recommended for building foundation and paving design purposes.

7. **Site Ingress/Egress Requirements**

Ingress/egress requirements to the site will be based on requirements of the City of Longview for driveway spacing and emergency vehicle requirements. Based on the site plan provided by Brownstone Architects and Planners, two entrance/exits are planned for the project. The main driveway will be from Gilmer Road, with a secondary entry/exit from E. Fairmont Street. Problems with the approval of these driveways are not anticipated from the City.

8. **Offsite Requirements and Costs**

Water, storm drainage, power and communication utility services are adjacent to the property. Costs to connect to these utility mains are anticipated to be within a normal range, if connections are made along E. Fairmont Street.

Additional costs should be anticipated for a secondary water service connection to the water main on the opposite side of Gilmer Road. Refer to Section 10 below for additional information.

- It is anticipated costs for this secondary connection would be in the $300 per linear foot range. The costs will be attributed to boring a steel casing under Gilmer Road over a distance of approximately 70 feet.
 - **Approximate Offsite Cost** - $21,000

The nearest sanitary sewer gravity main, a 15” clay pipe, to connect to is approximately 85 feet from the northeast property line, on the opposite of Gilmer creek. Given the grade differential of the site, the depth of the creek and the depth of the connecting manhole, it is likely additional costs will be required to make this connection. The costs will be attributed to deep excavation and or timing work to minimize runoff waters in the creek.

- It is anticipated costs for this connection would be in the $60 per linear foot range. The costs will be attributed to open excavation to a depth of 10 feet, as well as crossing an active creek. Total distance is approximately 85 feet.
 - **Approximate Offsite Cost** - $5,100
9. **Onsite Requirements and Costs**

The onsite costs will include grading, concrete work, electrical, access and paving, utilities, striping, and signage. The onsite costs are estimated at $1,259,160.

Given the steep topography of the site, several runs of retaining wall should be anticipated to establish building pads. This necessity can be confirmed by observing the finished floor elevation differentials of the residential units along Georgia Lane to the east of the site. This extra cost should be planned for and can be further defined during the design phase of the project.

10. **Water/Sanitary Sewer Service Summary**

Based on information obtained from the City’s GIS system there is a 12” water main along the north side of E. Fairmont Street adjacent to the site. This is the water main the development should anticipate connecting to for water supply.

In addition, there is a 12” water main on the opposite side of Gilmer Road. If the City requires a loop feed of the water supply into the development, or the fire protection engineer determines additional water pressure is needed for the development, a secondary connection should be anticipated on this water main. Refer to Section 8 for anticipated offsite costs.

Upon reviewing the City’s GIS mapping system for second time, on February 16, 2018, it appears the City has updated its system to include a 6-inch DIP water main at the northeast corner of the site. This 6-inch main did not appear during the initial review of the GIS system on January 31, 2018. Copies of both maps are included as Exhibit 7 in this report.

If this 6-inch line is located as the new map indicates, and the City will allow the development to connect to it, the additional offsite water costs listed in Section 8, could be avoided.

An online application for residential water service can be found at this link:

https://www.longviewtexas.gov/FormCenter/Water-Utilities-7/Water-Utility-Service-Application-Reside-81

The nearest sanitary sewer gravity main, a 15” clay pipe, to connect to is approximately 85 feet from the northeast property line, on the opposite side of Gilmer Creek. Refer to Section 8 for anticipated offsite costs.
11. **Electricity, Cable TV, and Gas**

American Electric Power / SWEPCO is the electric service provider to the Longview area. Natural gas is available from both CenterPoint Energy and Atmos Energy.

Locally based telecom companies provide digital voice switching and data transport speeds that exceed 10 Gigabits per second.

Based on an internet search at https://www.cabletv.com/tx/longview it appears cable service to the site is available from Direct TV and Dish TV.

Contact information for these and additional utility providers is shown in Exhibit 8.

12. **Zoning**

The site is currently located within the City limits of Longview.

On January 30, 2018, a rezoning application was brought before the Planning and Zoning Commission to rezone the site from the current PD-2 to multi-family (MF-3). A copy of the P&Z Agenda is presented in Exhibit 6.

On February 8, 2018, the City Council approved the rezoning request for the property. As such, the City approved and issued Ordinance 4147 codifying the change. A copy of the ordinance is also included in Exhibit 6.

13. **Building Code / Design Requirements**

The project will be designed to comply with all City of Longview ordinances and design requirements. The City requires compliance with the following codes and ordinances:

- 2015 International Energy Code (IECC)
- 2012 International Building Code (IBC)
- 2012 International Residential Code (IRC)
- 2012 International Fire Code (IFC)
- 2012 International Plumbing Code (IPC)
- 2012 International Property Maintenance Code (IPMC)
- 2012 International Fuel Gas Code (IFGC)
- 2012 International Mechanical Code (IMC)
- 2017 National Electric Code (NEC)
14. **Impact or Development Fee Summary**

At this time, the project will not be subject to any impact fee. Development fees are relatively low and as required per the various ordinances.

Current water and sewer rates and fees, as well as various planning and zoning fees, from the City of Longview are presented in Exhibit 5.

15. **Building Permit Fee Summary**

Building permit fees are collected by the City of Longview. The various “Building Inspection” applications and fee structure can be found at the link below.

https://www.longviewtexas.gov/2824/Permit-Applications

Many of the typical contractors for the proposed project will be required to register and pull a license with the City of Longview. This information can be found at the link below.

https://www.longviewtexas.gov/2823/Licensing-and-Registration-Applications

16. **Site Plan Observations, Recommendations, Design**

There are several positive aspects of this site from a development perspective. These include availability of water service, sanitary sewer service, electric power and natural gas service, and easy access from a public thoroughfare. The Site Plan in Exhibit 2 shows how the tract will be developed.

Specific observations, noted in this report, for likely additional costs beyond what would be considered “typical” should be planned for moving this project forward.

17. **Other Considerations or Issues Relevant To Site Development**

Storm Drain Detention

According to the City of Longview ordinances, Section 43-51:

Sec. 43-51. On-site detention not required; adequate drainage required; adequate drainage defined.

(a) On-site detention not required; adequate drainage required. On-site detention of stormwater runoff shall not be a condition of nor a requirement for the development of real property within the city limits of the city. Compliance with the minimum requirements of this chapter in no way
shall be construed as relieving the property owner of any liability which they may incur as a result of damage to downstream or upstream properties resulting from the development of the site or to install the infrastructure necessary to provide adequate drainage for the development site.

(b) Adequate drainage defined; certification required. As used in this article, the term "adequate drainage" shall mean the drainage of water in such a manner that the water does not damage the property of another. Certification by a Texas registered engineering firm and a Texas licensed engineer, qualified by education and experience in the field of hydrology and hydraulics, that adequate drainage exists for the development site as measured by generally accepted engineering standards and procedures is required.

(Ord. No. 2990, § 2, 12-14-00, Ord. No. 3939, § 7, 8-14-14)

This City policy was confirmed by CP&Y through a phone conversation with Adam Fields in the City Engineering Department on Monday, February 5, 2018. In summary, detention is not required but it is the developer’s responsibility to not negatively impact downstream properties.

Given the development will be increasing runoff significantly, it is highly recommended to plan for and design a system to reduce the runoff velocity leaving the site. This can easily be accomplished with a detention basin. However other options are available and should be evaluated during the design phase of the project.

(The remainder of this page is intentionally left blank.)
Boundary Survey
February 22, 2018

5.919 Acres of Land
Job No. 18-9294

METES & BOUNDS DESCRIPTION OF 5.919 ACRES OF LAND

Being 5.919 acres of land situated within the city limits of Longview and being part of the Isaac C. Skillern Survey, Abstract No. 4, Gregg County, Texas, being all of that called 4.91 acre tract fully described in a Special Warranty Deed dated February 12, 1992 from American Federal Bank, F.S.B. to White Oak State Bank (N.K.A. Citizens National Bank) recorded in Volume 2352, Page 93 of the Official Records of Gregg County, Texas and being all of that called 1.009 acre tract fully described in a Special Warranty Deed dated October 13, 1995 from Guaranty Federal Bank, F.S.B. to White Oak State Bank (N.K.A. Citizens National Bank) recorded in Volume 2877, Page 288 of the Official Records of Gregg County, Texas, said 5.919 acre tract being more fully described as follows:

BEGINNING: at a 3/4” iron rod found in the north right-of-way line of East Fairmont Street for the southeast corner of the called 4.91 acre tract and being the southwest corner of Lot 1, Block 2070 of Faircreek Addition Unit No. 1 according to the plat thereof recorded in Plat Book Volume 9, Page 97 of the Plat Records of Gregg County, Texas, from which a “X” found in a concrete for the point of curvature at the southerly southeast corner of said Lot 1, Block 2070 bears North 87°46’33” East a distance of 119.95 feet, said ¾” iron rod found having a Texas State Plane North Central Coordinate Value of (X = 3,119,042.31; Y = 6,890,623.87);

THENCE: South 86°52’30” West, with the north right-of-way line of East Fairmont Street, a distance of 350.05 feet to a 3/8” iron rod found for the southerly southwest corner of the 4.91 acre tract and being the southeast corner of a called 1.43 acre tract described in a deed to White Oak State Bank (N.K.A. Citizens National Bank) recorded in Volume 2341, Page 550 of the Official Records of Gregg County, Texas, from which a 3/8” iron rod found at the intersection of the east right-of-way line of Gilmer Road (State Highway No. 300) with the north right-of-way line of East Fairmont Street for the southwest corner of said 1.43 acre tract bears South 87°21’41” West a distance of 249.90 feet, said 3/8” iron rod found for the southerly southwest corner of the herein described tract, having a Texas State Plane North Central Coordinate Value of (X = 3,118,692.78; Y = 6,890,604.79);
THENCE: North 02°11'31" West, with the east line of the 1.43 acre tract, a distance of 249.94 feet to a 3/8" iron rod found for the northeast corner the same and being the southerly inner ell corner of the 4.91 acre tract;

THENCE: South 87°20'15" West, with the north line of the 1.43 acre tract and the westerly south line of the 4.91 acre tract, a distance of 49.94 feet to a 5/8" iron rod found for the westerly southwest corner of the 4.91 acre tract and being the southeast corner of the 1.009 acre tract referenced above;

THENCE: South 87°23'04" West, continuing with the north line of the 1.43 acre tract and with the south line of the 1.009 acre tract, a distance of 199.99 feet to a 3/8" iron rod found in the east right-of-way line of Gilmer Road (State Highway No. 300) for the southwest corner of the 1.009 acre tract and being the northwest corner of the 1.43 acre tract, from which a 3/8" iron rod found (previously mentioned above) for southwest corner of said 1.43 acre tract bears South 02°11'56" East a distance of 250.00 feet;

THENCE: North 02°12'13" West, with the east right-of-way line of Gilmer Road and the west line of the 1.009 acre tract, a distance of 225.73 feet to a point for corner in an asphalt drive for the northwest corner of said 1.009 acre tract and being the southwest corner of a called 1.049 acre tract described in a deed to ETPEC Real Estate, LLC recorded in GCC 201700989 of the Official Public Records of Gregg County, Texas, from which the northwest corner of said 1.049 acre tract bears North 02°12'58" West a distance of 149.74 feet which is referenced by a Cotton Spindle found with a shiner stamped "Longview Surveying" that bears South 03°20'16" West a distance of 3.71 feet;

THENCE: South 89°22'06" East, with the north line of the 1.009 acre tract, a distance of 200.05 feet to a 5/8" iron rod found for the northeast corner the same and being the westerly northwest corner of the 4.91 acre tract;

THENCE: South 87°35'48" East, with the westerly north line of the 4.91 acre tract, a distance of 101.65 feet to a 3/8" iron rod found for the northerly inner ell corner of the same and being the southeast corner of the 1.049 acre tract;

THENCE: North 02°03'06" West, with the east line of the 1.049 acre tract, a distance of 153.10 feet to a 5/8" iron rod found at an old wire fence intersection for the northeast corner of said 1.049 acre tract and being the northerly northwest corner of the 4.91 acre tract;

THENCE: North 86°29'50" East, with the easterly north line of the 4.91 acre tract, at a distance of 196.05 feet passing a 3/8" iron rod found for the southeast corner of a called 0.75 acre tract described in a deed to John W. Yuen recorded in Volume 1305, Page 60 of the Deed Records of Gregg County, Texas, continuing in all a total distance of 251.53 feet to a point for corner in Gilmer Creek for the northeast corner of the 4.91 acre tract;
THENCE: South 29°51'58" East, with the northeasterly line of the 4.91 acre tract, a distance of 99.09 feet to a ½" iron rod found on the north edge of a concrete drive for the northwest corner of Lot 6, Block 2070 of the Faircreek Addition Unit No. 2 according to the plat thereof recorded in Plat Book Volume 10, Page 35 of the Plat Records of Gregg County, Texas;

THENCE: South 02°27'54" East, with the west line of Lots 4, 5 & 6, Block 2070, Faircreek Addition Unit No. 2 and the east line of the 4.91 acre tract, a distance of 258.96 feet to a 3/8” iron rod found for the southwest corner of Lot 4, Block 2070 and being the northwest corner of Lot 3, Block 2070 of the Faircreek Addition Unit No. 1, referenced above;

THENCE: with the west line of Lots 1, 2 & 3, Block 2070, Faircreek Addition Unit No. 1 and with the east line of the 4.91 acre tract as follows:

1. South 02°07'54" East a distance of 86.39 feet to a 3/8” iron rod found for the southwest corner of Lot 3 and the northwest corner of Lot 2;

2. South 02°30'59" East, a distance of 85.85 feet to a 3/8” iron rod found for the southwest corner of Lot 2 and the northwest corner of Lot 1;

3. South 01°46'40" East a distance of 90.00 feet to the Point of Beginning containing 5.919 Acres of Land.

BASIS OF BEARINGS: All bearings are GRID rotated to the Texas State Plane Coordinate System. North American Datum of 1983 (2011), Texas North Central Zone (4202). To Adjust bearings rotate by the convergence angle of + 02°02'06". The Distances and Acreage shown are SURFACE. To adjust to GRID, Multiply by the combined scale factor of 0.99990395.

This metes and bounds description is an integral part of a plat of even date showing the same tract described herein and is not valid unless signed in blue ink with an accompanying Registered Professional Land Surveyors Seal.

THOMPSON & ASSOCIATES, INC.
T.B.P.L.S. Firm No. 10001100

Steven J. Freeman, II, Registered Professional Land Surveyor, State of Texas No. 6339
Site Plan
UNIT MATRIX:

<table>
<thead>
<tr>
<th>UNIT DESIGNATION</th>
<th>NO.</th>
<th>NET AREA</th>
<th>TOTAL PROJ.</th>
<th>GROSS AREA</th>
<th>TOTAL PROJ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1-BED / 1-BATH</td>
<td>30</td>
<td>675 S.F.</td>
<td>20,250 S.F.</td>
<td>760 S.F.</td>
<td>22,800 S.F.</td>
</tr>
<tr>
<td>B 2-BED / 2-BATH</td>
<td>34</td>
<td>952 S.F.</td>
<td>32,368 S.F.</td>
<td>1,038 S.F.</td>
<td>35,292 S.F.</td>
</tr>
<tr>
<td>C-HC 3-BED / 2-BATH</td>
<td>2</td>
<td>1,122 S.F.</td>
<td>16,830 S.F.</td>
<td>1,208 S.F.</td>
<td>18,120 S.F.</td>
</tr>
</tbody>
</table>

TOTALS: 84 73,824 S.F. 81,016 S.F.

BUILDING MATRIX:

<table>
<thead>
<tr>
<th>BUILDING DESIGNATION</th>
<th>NET AREA</th>
<th>GROSS AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 APARTMENTS (IIa) (8) 3-BEDS</td>
<td>8,976 S.F.</td>
<td>10,905 S.F.</td>
</tr>
<tr>
<td>2 APARTMENTS (IIa) (6) 3-BEDS</td>
<td>8,976 S.F.</td>
<td>10,905 S.F.</td>
</tr>
<tr>
<td>3 APARTMENTS (IIa) (12) 1-BEDS & (12) 2-BEDS</td>
<td>19,524 S.F.</td>
<td>24,601 S.F.</td>
</tr>
<tr>
<td>4 APARTMENTS (IIa) (12) 1-BEDS & (12) 2-BEDS</td>
<td>19,524 S.F.</td>
<td>24,601 S.F.</td>
</tr>
<tr>
<td>5 APARTMENTS (IIa) (6) 1-BEDS & (12) 2-BEDS</td>
<td>16,824 S.F.</td>
<td>20,738 S.F.</td>
</tr>
<tr>
<td>6 CLUBHOUSE / LEASING OFFICE</td>
<td>3,154 S.F.</td>
<td>3,970 S.F.</td>
</tr>
</tbody>
</table>

TOTALS: 76,978 S.F. 95,720 S.F.

NOTES:

- **SITE AREA:** 5.9 ACRES (14.24 UNITS PER ACRE)
- **FLOOD PLAIN:** NOT IN FLOOD PLAIN
- **EASEMENTS:** ELECTRICAL & CHANNEL
- **PARKING:**
 - LOCAL REQUIREMENT: 147 SPACES
 - PROVIDED SPACES: 154 SPACES
 - PROVIDED ADA SPACES: 12 SPACES
- **MOBILITY IMPAIRMENT:** 5 UNITS
- **HEARING/VISUAL IMPAIRMENT:** 2 UNITS

LONGVIEW PINES APARTMENTS

ARCHITECTURAL SITE PLAN

02/27/2018

PRELIMINARY - NOT FOR BUILDING PERMITTING OR CONSTRUCTION

© 2018, ALL RIGHTS RESERVED
Flood Insurance Rate Map (FIRM)
Online Soils Report from USDA, NRCS
Custom Soil Resource Report for Upshur and Gregg Counties, Texas

February 6, 2018
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

Preface ... 2
How Soil Surveys Are Made 5
Soil Map ... 8
Soil Map ... 9
Legend ... 10
Map Unit Legend .. 11
Map Unit Descriptions .. 11
 Upshur and Gregg Counties, Texas 13
 BuC—Bowie-Urban land complex, 2 to 5 percent slopes 13
 CbE—Cuthbert fine sandy loam, 8 to 25 percent slopes 14
 KrC—Kirvin-Urban land complex, 2 to 5 percent slopes 16
 Ma—Mattex loam, 0 to 1 percent slopes, frequently flooded 17
References ... 19
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and
identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Unit Polygons
- Soil Map Unit Lines
- Soil Map Unit Points

Special Point Features
- Blowout
- Borrow Pit
- Clay Spot
- Closed Depression
- Gravel Pit
- Gravelly Spot
- Landfill
- Lava Flow
- Marsh or swamp
- Mine or Quarry
- Miscellaneous Water
- Perennial Water
- Rock Outcrop
- Saline Spot
- Sandy Spot
- Severely Eroded Spot
- Sinkhole
- Slide or Slip
- Sodic Spot

- Spoil Area
- Stony Spot
- Very Stony Spot
- Wet Spot
- Other
- Special Line Features

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

Background
- Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service
Web Soil Survey URL: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Upshur and Gregg Counties, Texas
Survey Area Data: Version 14, Nov 7, 2017

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Data not available.

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BuC</td>
<td>Bowie-Urban land complex, 2 to 5 percent slopes</td>
<td>7.5</td>
<td>30.2%</td>
</tr>
<tr>
<td>CbE</td>
<td>Cuttbert fine sandy loam, 8 to 25 percent slopes</td>
<td>7.9</td>
<td>32.0%</td>
</tr>
<tr>
<td>KrC</td>
<td>Kirvin-Urban land complex, 2 to 5 percent slopes</td>
<td>6.6</td>
<td>26.5%</td>
</tr>
<tr>
<td>Ma</td>
<td>Mattex loam, 0 to 1 percent slopes, frequently flooded</td>
<td>2.8</td>
<td>11.3%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>24.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
Upshur and Gregg Counties, Texas

BuC—Bowie-Urban land complex, 2 to 5 percent slopes

Map Unit Setting

- National map unit symbol: mbj5
- Elevation: 0 to 4,000 feet
- Mean annual precipitation: 8 to 60 inches
- Mean annual air temperature: 54 to 73 degrees F
- Frost-free period: 180 to 310 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Bowie and similar soils: 60 percent
- Urban land: 25 percent
- Minor components: 15 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bowie

Setting

- Landform: Interfluves
- Down-slope shape: Convex
- Across-slope shape: Linear
- Parent material: Loamy residuum weathered from sandstone and shale

Typical profile

- H1 - 0 to 12 inches: fine sandy loam
- H2 - 12 to 44 inches: sandy clay loam
- H3 - 44 to 72 inches: sandy clay loam
- H4 - 72 to 80 inches: sandy clay loam

Properties and qualities

- Slope: 2 to 5 percent
- Depth to restrictive feature: More than 80 inches
- Natural drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
- Depth to water table: About 42 to 60 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Moderate (about 7.8 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 3e
- Hydrologic Soil Group: B
- Ecological site: Loamy Upland (F133BY005TX)
- Hydric soil rating: No

Description of Urban Land

Setting

- Landform: Interfluves
- Parent material: Loamy residuum weathered from sandstone and shale
Typical profile
 H1 - 0 to 40 inches: variable

Interpretive groups
 Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 8s
 Hydrologic Soil Group: D
 Hydric soil rating: No

Minor Components
 Unnamed
 Percent of map unit: 15 percent
 Hydric soil rating: No

CbE—Cuthbert fine sandy loam, 8 to 25 percent slopes

Map Unit Setting
 National map unit symbol: 2s62w
 Elevation: 150 to 750 feet
 Mean annual precipitation: 40 to 56 inches
 Mean annual air temperature: 61 to 68 degrees F
 Frost-free period: 190 to 270 days
 Farmland classification: Not prime farmland

Map Unit Composition
 Cuthbert and similar soils: 85 percent
 Minor components: 15 percent
 Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cuthbert

Setting
 Landform: Interfluves
 Landform position (two-dimensional): Backslope
 Landform position (three-dimensional): Side slope
 Down-slope shape: Linear
 Across-slope shape: Convex
 Parent material: Marine deposits

Typical profile
 A - 0 to 4 inches: fine sandy loam
 E - 4 to 9 inches: fine sandy loam
 Bt - 9 to 22 inches: clay
 B/C - 22 to 32 inches: clay loam
 C - 32 to 80 inches: sandy clay loam

Properties and qualities
 Slope: 8 to 25 percent
 Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Moderate (about 6.9 inches)

Interpretive groups
Land capability classification (irrigated): 7e
Land capability classification (nonirrigated): 7e
Hydrologic Soil Group: C
Ecological site: Loamy Over Clayey Upland (F133BY003TX)
Hydric soil rating: No

Minor Components
Kirvin
Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Linear
Ecological site: Loamy Over Clayey Upland (F133BY003TX)
Hydric soil rating: No

Sacul
Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Loamy Over Clayey Upland (F133BY003TX)
Hydric soil rating: No

Tenaha
Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Northern Sandy Loam Upland (F133BY006TX)
Hydric soil rating: No
KrC—Kirvin-Urban land complex, 2 to 5 percent slopes

Map Unit Setting
National map unit symbol: mbjj
Elevation: 0 to 4,000 feet
Mean annual precipitation: 8 to 60 inches
Mean annual air temperature: 54 to 73 degrees F
Frost-free period: 180 to 310 days
Farmland classification: Not prime farmland

Map Unit Composition
Kirvin and similar soils: 55 percent
Urban land: 25 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kirvin
Setting
Landform: Interfluvles
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Clayey residuum weathered from sandstone and shale

Typical profile
H1 - 0 to 12 inches: very fine sandy loam
H2 - 12 to 51 inches: clay
H3 - 51 to 61 inches: clay loam

Properties and qualities
Slope: 2 to 5 percent
Depth to restrictive feature: 40 to 60 inches to densic bedrock
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 6.4 inches)

Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: Loamy Over Clayey Upland (F133BY003TX)
Hydric soil rating: No
Description of Urban Land

Setting
Landform: Interfluves
Parent material: Clayey residuum weathered from sandstone and shale

Typical profile
H1 - 0 to 40 inches: variable

Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8s
Hydrologic Soil Group: D
Hydric soil rating: No

Minor Components
Unnamed
Percent of map unit: 20 percent
Hydric soil rating: No

Ma—Mattex loam, 0 to 1 percent slopes, frequently flooded

Map Unit Setting
National map unit symbol: 2tcpl
Elevation: 150 to 600 feet
Mean annual precipitation: 43 to 60 inches
Mean annual air temperature: 63 to 68 degrees F
Frost-free period: 201 to 269 days
Farmland classification: Not prime farmland

Map Unit Composition
Mattex and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mattex

Setting
Landform: Flood plains
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Concave
Across-slope shape: Linear
Parent material: Loamy alluvium

Typical profile
A - 0 to 8 inches: loam
Bg1 - 8 to 13 inches: loam
Bg2 - 13 to 39 inches: loam
Properties and qualities

- **Slope:** 0 to 1 percent
- **Depth to restrictive feature:** More than 80 inches
- **Natural drainage class:** Somewhat poorly drained
- **Runoff class:** High
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately high to high (0.57 to 1.98 in/hr)
- **Depth to water table:** About 12 to 18 inches
- **Frequency of flooding:** Frequent
- **Frequency of ponding:** None
- **Salinity, maximum in profile:** Nonsaline (0.1 to 1.0 mmhos/cm)
- **Available water storage in profile:** High (about 10.3 inches)

Interpretive groups

- **Land capability classification (irrigated):** 5w
- **Land capability classification (nonirrigated):** 5w
- **Hydrologic Soil Group:** B/D
- **Ecological site:** Loamy Bottomland (F133BY017TX)
- **Hydric soil rating:** Yes

Minor Components

Iulus

- **Percent of map unit:** 10 percent
- **Landform:** Flood plains
- **Landform position (two-dimensional):** Toeslope
- **Landform position (three-dimensional):** Tread
- **Down-slope shape:** Linear
- **Across-slope shape:** Concave
- **Ecological site:** Creek Bottomland (F133BY014TX)
- **Hydric soil rating:** No
References

Custom Soil Resource Report

Rate / Fee Schedules
Planning and Zoning Fees

<table>
<thead>
<tr>
<th>Service Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandonment of Right-of-Way/Easement</td>
<td>$635.00</td>
</tr>
<tr>
<td>Abandonment of right-of-way/easement</td>
<td></td>
</tr>
<tr>
<td>Annexation (Voluntary)</td>
<td>$307.00</td>
</tr>
<tr>
<td>Annexation (Voluntary)</td>
<td></td>
</tr>
<tr>
<td>Plat-Related Review</td>
<td>$307.00 + $1.00 per lot</td>
</tr>
<tr>
<td>Pre-submission Proposal</td>
<td>$307.00</td>
</tr>
<tr>
<td>Pre-submission Proposal for Replat</td>
<td>$307.00</td>
</tr>
<tr>
<td>Plat</td>
<td>$307.00</td>
</tr>
<tr>
<td>Replat</td>
<td>$307.00</td>
</tr>
<tr>
<td>Plat Vacation (including filing fees)</td>
<td>$232.00</td>
</tr>
<tr>
<td>Plat Variance</td>
<td>$232.00</td>
</tr>
<tr>
<td>Final Plat recording in Gregg County</td>
<td>$16.00</td>
</tr>
<tr>
<td>Final Plat recording in Harrison County</td>
<td>$75.00 for plat + $4.00 for each page of tax certificates.</td>
</tr>
<tr>
<td>Site Plan Review</td>
<td>$307.00</td>
</tr>
<tr>
<td>Site Plan Review</td>
<td></td>
</tr>
<tr>
<td>Zoning Change Requests and Zoning Permits</td>
<td>$307.00</td>
</tr>
<tr>
<td>Basic Rezoning Application</td>
<td>$307.00</td>
</tr>
<tr>
<td>Planned Development Application</td>
<td>$307.00</td>
</tr>
<tr>
<td>Board of Adjustment Application/Variance</td>
<td>$307.00</td>
</tr>
<tr>
<td>Specific Use Permit Application</td>
<td>$307.00</td>
</tr>
<tr>
<td>Zoning Publications</td>
<td>$27.00</td>
</tr>
<tr>
<td>Zoning Ordinance (bound copy with explanatory charts)</td>
<td>$27.00</td>
</tr>
<tr>
<td>Zoning Verification Letter</td>
<td>$50.00</td>
</tr>
<tr>
<td>Site Verification Fee</td>
<td>$20.00</td>
</tr>
<tr>
<td>Future Land Use Plan</td>
<td>$200.00</td>
</tr>
<tr>
<td>Outdoor Event Permit</td>
<td>$250.00</td>
</tr>
<tr>
<td>Outdoor Event Permit</td>
<td></td>
</tr>
<tr>
<td>Temporary Outdoor Vendor Permit</td>
<td>$75.00</td>
</tr>
<tr>
<td>Temporary Outdoor Vendor Permit</td>
<td></td>
</tr>
<tr>
<td>Maps</td>
<td>$7.00</td>
</tr>
<tr>
<td>Historic Preservation Requests</td>
<td>$420.00</td>
</tr>
<tr>
<td>Historic Overlay District Application</td>
<td></td>
</tr>
<tr>
<td>Historic Landmark Application</td>
<td>$420.00</td>
</tr>
<tr>
<td>Certificate of Appropriateness Application</td>
<td>$307.00</td>
</tr>
</tbody>
</table>

Updated 10/01/15
Rates and Fees

The following rates and fees are in accordance with the City of Longview Resolution 4818 and are effective as of October 1, 2014. Listed below are the most current utility rates, and fees that can be incurred with your utility account.

Did you know water leaks in November, December or January could impact your monthly sewer charges for the following year? Please report any leaks experienced during those months to Water Utilities by May to be eligible for a possible billing adjustment.

<table>
<thead>
<tr>
<th>Water Charges</th>
<th>Inside City Limits</th>
<th>Outside City Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8" Meter</td>
<td>$10.35</td>
<td>$19.14</td>
</tr>
<tr>
<td>1" Meter</td>
<td>$25.88</td>
<td>$38.82</td>
</tr>
<tr>
<td>1 1/2" Meter</td>
<td>$51.75</td>
<td>$77.63</td>
</tr>
<tr>
<td>2" Meter</td>
<td>$82.80</td>
<td>$124.20</td>
</tr>
<tr>
<td>3" Meter</td>
<td>$165.60</td>
<td>$248.40</td>
</tr>
<tr>
<td>Per 1,000 gallons</td>
<td>$2.55</td>
<td>$4.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sewer Charges</th>
<th>Inside City Limits</th>
<th>Outside City Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Family (>3 units)</td>
<td>$16.10</td>
<td>$27.62</td>
</tr>
<tr>
<td>All others</td>
<td>$12.25</td>
<td>$21.24</td>
</tr>
<tr>
<td>Per 1,000 gallons</td>
<td>$3.85</td>
<td>$6.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refuse Charges</th>
<th>Inside City Limits</th>
<th>Outside City Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic commercial cart</td>
<td>$29.81</td>
<td>$59.62</td>
</tr>
<tr>
<td>Each additional cart</td>
<td>$7.50</td>
<td>$15.00</td>
</tr>
<tr>
<td>Each additional recycling</td>
<td>$5.00</td>
<td>$10.00</td>
</tr>
<tr>
<td>Residential garbage</td>
<td>$14.95</td>
<td>$29.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tax Charges</th>
<th>Gregg County</th>
<th>Harrison County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.25%</td>
<td>7.75%</td>
</tr>
</tbody>
</table>

Fee Amount

Activation Fee $50.00
A nonrefundable fee charged for connecting to an existing water service.

Re-activation Fee $50.00
A nonrefundable fee charged to any customer reconnecting to the water system after the account has been deactivated for non-payment.

Inspection turn on $25.00
Charged to customers who require water to be turned on for a plumbing inspection only. Water service will be on for a maximum of 5 days.

Transfer fee $25.00
Charged to turn on water meter at one location and off at another in connection with the transfer from one service address to another location. There must be no more than 14 days between the water being turned off at previous address and on at the new address.

Meter re-set fee $25.00
Charged to customers that had the meter pulled while they were at a service address and now want the meter re-installed.

Meter testing fee $50.00
Charged when customer request a meter test and the meter is found to be within industry tolerances (AWWA) standards. Fees covers the cost of removing, shipping and testing meter. This fee is only for water meters up to 1". Any meter testing fee associated with larger meters will be determined by the Director of Public Works.

After hours fee $25.00
Charged to any customer who request any water related service after 5 p.m. or on weekends and holidays.

Courtesy fee $29.95
Charged to customers who request the water be turned on for a time period no longer than 14 days. To be eligible customer must have a current water account. Fee only entitles customer usage of up to 2,000 gallon threshold will be charged at the current per 1,000 gallon rate.

Emergency off fee $25.00
Charged to any customer who request that their service be cut-off for emergency purposes.

2nd data log fee $25.00
Charged to any customer who has had a data log and request a second data log within a 12 month time period.

1st tampering fee $150.00
Charged to any customer who damages or tampers with the meter, valve, or other City equipment. Only authorized City of Longview employees or licensed plumbers are allowed to exercise water valves.

2nd tampering fee $250.00
3rd tampering fee $500.00

Same day service fee $25.00
Charged to any customer who request any water related service be performed on the same day.

Temporary off fee $25.00
Charged to any customer who request that their service be temporarily disconnected for any reason.

Return Payment fee $30.00
Charged to any customer account for a returned payment. This fee is charged regardless of the payment method that was returned.

Contact Us

Water Utilities
City Hall
300 W. Cotton St.
Longview, TX 75601

https://www.longviewtexas.gov/2550/Rates-and-Fees
P&Z Agenda 01/30/18 – Rezoning Case and Ordinance 4147 02/08/18
Planning and Zoning Commission Agenda
January 30, 2018
5:30 p.m.
300 W. Cotton St.
City Hall Council Chambers

I. Call to Order

II. Invocation

III. Pledge of Allegiance

IV. Approval of December 19, 2017 P&Z Minutes

V. Regular Agenda

A. A PUBLIC HEARING will be held to consider application #RP18-02 Bob's Place Unit 1 & 2 filed by Premiere Management to replat approximately 5.27 acres of Lot 1, Block 1 and Lots 1 & 2, Block 2 Bob's Place into four commercial lots located on south side of Hawkins Parkway east of Zee Way and west of Fourth Street.

B. A PUBLIC HEARING will be held to consider application #RP18-03 Home Depot filed by Premiere Management to replat approximately 6.78 acres of Lot 1A, Block 1, Home Depot into three commercial lots located on south side of Hawkins Parkway and west of Fourth Street.

C. A PUBLIC HEARING will be held to consider #M18-01 amending the City of Longview Future Land Use Map from Office (OFF) to Retail (RET) located southwest of the intersection of McCann Road and Spring Hill Road.

D. A PUBLIC HEARING will be held to consider application #Z18-01 filed by Keene Guidry to rezone approximately 2.04 acres of Lots 1-A and 1-B Forest Square Unit One from Planned Development (PD-30) to General Retail (GR) zoning district located at the southwest corner of Forest Square and McCann Road.
E. A PUBLIC HEARING will be held to consider application #Z18-02 filed by Brownstone Ventures, LLC to rezone approximately 5.92 acres of AB 4 I C Skillern Survey, Tract 93 and 93-01, Section 5 from a Planned Development (PD-2) to a Multi-family (MF-3) zoning district located east of Gilmer Road and north of Fairmont Street.

F. A PUBLIC HEARING will be held to consider application #PD18-02 filed by St. Mary's Catholic Church requesting to rezone approximately 0.691 acres of AB 258 P P Rains Survey Tract 44 Section 5 from Single Family Residential (SF-4) to Planned Development (PD18-02) for a columbarium located east of Ridgewood Drive and north of Hollybrook Drive.

G. A PUBLIC HEARING will be held to consider application #PD18-03 filed by Johnson & Pace Inc requesting to rezone approximately 5.645 acres of AB 258 P P Rains Survey, Tracts 20, 21; 21-01; 21-02; and Tract 21-03, Section 8 from MF-3 and Planned Development (PD08-01) to Planned Development (PD18-03) for a self storage/mini warehouse located west of McCann Road and south of Spring Hill Road.

H. A PUBLIC HEARING will be held to consider application #HL17-01 filed by Gregg County Historical Foundation requesting a Local Historic Landmark Designation for a structure known as the Gregg County Historical Museum/Everett Building located at 214 North Fredonia Street.

VI. Staff Update

A. Provide update of City Council action on previous zoning items.

VII. Citizen Comment

VIII. Adjourn

Persons with disabilities who plan to attend this meeting and who may need auxiliary aid or services are requested to contact Planning and Zoning Division at 903-237-1072 at least two days before this meeting so that appropriate arrangements can be made.

"Any final action, decision or vote on a matter deliberated in a closed meeting will only be taken in an open meeting that is held in compliance with Texas Government code, chapter 551. The Planning and Zoning Commission reserves the right to adjourn into a closed meeting or executive session as authorized by Texas Government Code, section 551.001, et seq. (the Texas open meetings act) on any item on its open meeting agenda in accordance with the Texas open meetings act, including, without limitation sections 551.071-551.086 of the Texas open meetings act.

The Planning and Zoning Commission reserves the rights to consider use classifications for the property that are less intense than the use requested by the applicant.
AN ORDINANCE AMENDING THE ZONING ORDINANCE OF THE CITY OF LONGVIEW, TEXAS, ORDINANCE NO. 96, AS AMENDED, WHICH SAID ORDINANCE ADOPTS THE ZONING REGULATIONS, USE DISTRICTS, AND A ZONING MAP IN ACCORDANCE WITH A COMPREHENSIVE PLAN, BY CHANGING THE ZONING AND CLASSIFICATION OF THE FOLLOWING DESCRIBED PROPERTY, TO-WIT: THAT APPROXIMATELY 5.92 ACRES OF AB 4 I C SKILLERN SURVEY, TRACT 93 AND 93-01, SECTION 5, BE REZONED FROM PLANNED DEVELOPED (PD-2) TO MULTI-FAMILY (MF-3) ZONING DISTRICT, LOCATED ON THE EASTSIDE OF GILMER ROAD AND NORTHSIDE OF FAIRMONT STREET; FINDING THAT THE PLANNING AND ZONING COMMISSION MEETING AND THE CITY COUNCIL MEETING AT WHICH THIS ORDINANCE PASSED COMPLIED WITH THE OPEN MEETINGS ACT; PROVIDING THAT VIOLATIONS OF THIS ORDINANCE SHALL BE SUBJECT TO THE SAME PENALTIES AND ENFORCEMENT AS VIOLATIONS OF THE ZONING ORDINANCE OF THE CITY OF LONGVIEW, INCLUDING WITHOUT LIMITATION A FINE OF UP TO $2,000.00 PER VIOLATION; REPEALING OTHER PROVISIONS IN CONFLICT HEREWITH; PROVIDING A SAVINGS CLAUSE; PROVIDING FOR SEVERABILITY OF THE PROVISIONS HEREOF; MAKING OTHER FINDINGS AND PROVISIONS RELATED TO THE SUBJECT; AND ESTABLISHING AN EFFECTIVE DATE.

WHEREAS, the City Planning and Zoning Commission of the City of Longview, Texas, and the City Council of the City of Longview, Texas, in compliance with the Charter of the City of Longview and the State laws in reference to the Zoning Ordinance regulations of the zoning map, have given requisite notices by publication and otherwise, and after holding due hearings and affording a full and fair hearing to all property owners, generally and to persons interested, situated in the affected area and in the vicinity thereof, the City Council of the City of Longview, Texas, being of the opinion
that the zoning changes should be made as set forth herein; NOW, THEREFORE,

BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF LONGVIEW,

TEXAS:

Section 1. That the basic Zoning Ordinance of the City of Longview, Texas, Ordinance No. 96, of the Ordinance of the City as amended, be, and the same is hereby amended insofar as the property herein described is concerned, and such property shall be classified and placed into the use district hereinafter set forth and be subject to the provisions of said ordinance generally, and the official zoning map of said city, is hereby amended and corrected so that the following described real property, to-wit: that approximately 5.92 acres of AB 4 I C Skillern Survey, Tract 93 and 93-01, Section 5 be rezoned from Planned Development (PD-2) to Multi-family (MF-3) zoning district, located on the eastside of Gilmer Road and northside of Fairmont Street.

Section 2. The City Planner is hereby directed to correct the Official Zoning District Maps in the office of the City Secretary, the Building Inspector and the City Planner to reflect the herein changes in zoning.

Section 3. That in all other respects the use of the herein above-described property shall be subject to all the applicable regulations of the Zoning Ordinance of the City of Longview, as amended.

Section 4. That both the Planning and Zoning Commission meeting and the City Council meeting at which this ordinance was approved were in all things conducted in strict compliance with the Texas Open Meetings Act, Texas Government Code Chapter 551.
Section 5. That this ordinance is adopted in accordance with Chapter 211 of the Texas Local Government Code.

Section 6. That violations of this ordinance shall be subject to such penalties and enforcement as provided for violations of the City of Longview Zoning Ordinance (Ordinance No. 96 of the City of Longview, Texas, as amended).

Section 7. That all ordinances or parts of ordinances in conflict with this ordinance are hereby repealed to the extent of such conflict only; provided, however, that the repeal of an ordinance by this ordinance does not affect the prior operation of the ordinance or any prior action taken under it, any obligation or liability previously acquired, accrued, or incurred under such prior ordinance, any violation of the prior ordinance or any penalty, forfeiture, or punishment incurred under said ordinance before its repeal, and any investigation, proceeding, or remedy under said prior ordinance and the penalty, forfeiture, or punishment imposed as a result of such investigation, proceeding, or remedy shall be imposed as if the prior ordinance had not been repealed.

Section 8. That if any section, paragraph, subdivision, clause, subsection, phrase, sentence, or other provision of this ordinance shall be judged invalid or held unconstitutional, the same shall not affect the validity of this ordinance as a whole or any part or provisions thereof other than the part so decided to be invalid or unconstitutional.

Section 9. That the City Secretary is directed to publish this ordinance in the official newspaper of the City of Longview in compliance with the provisions of Section 4.07 of the City Charter, which publication shall be sufficient if it contains the title of this ordinance and the penalty provided therein for violation thereof.
Section 10. That this ordinance shall be effective immediately from and after its passage and publication as required by law.

PASSED AND APPROVED this 8th day of February, 2018.

Dr. Andy Mack
Mayor

ATTEST:

Angie Shepard
City Secretary

APPROVED AS TO FORM:

Jim Finley
City Attorney
City’s GIS Utility Maps
01/31/18 and 02/16/18
Contact Lists
City of Longview Contacts

Building Inspections

Physical Address: 410 S. High St., Longview, Texas 75601
Mailing Address: P.O. Box 1952, Longview, Texas 75606
Phone: 903-237-1074
Email: Building@LongviewTexas.gov

Development Services

Physical Address: 410 S. High St., Longview, Texas 75601
Mailing Address: P.O. Box 1952, Longview, Texas 75606
Phone: 903-237-1060
Email: Online email form here: https://www.longviewtexas.gov/FormCenter/Contact-Us-5/Development-Services-49

Water Utilities

Physical Address: City Hall, 300 W. Cotton St., Longview, Texas 75601
Mailing Address: P.O. Box 1952, Longview, Texas 75606
Phone: 903-237-1030
Email: Online email form here: https://www.longviewtexas.gov/FormCenter/Contact-Us-5/Water-Utilities-55

Public Works

Physical Address: 933 Mobile Dr., Longview, Texas 75604
Mailing Address: P.O. Box 1952, Longview, Texas 75606
Phone: 903-237-1240
Email: Online email form here: https://www.longviewtexas.gov/FormCenter/Contact-Us-5/Public-Works-47
Utility Providers

<table>
<thead>
<tr>
<th>Provider</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP/SWEPCO Electric</td>
<td>(888) 216-3523</td>
</tr>
<tr>
<td>AT&T Telephone</td>
<td>(800) 464-7928</td>
</tr>
<tr>
<td>CenterPoint Energy (Gas)</td>
<td>(800) 259-5544</td>
</tr>
<tr>
<td>Atmos Energy (Gas)</td>
<td>(866) 286-6700</td>
</tr>
<tr>
<td>Longview Cable TV</td>
<td>(903) 758-9991</td>
</tr>
</tbody>
</table>